Home » Flex-Hybrid » AU Innovation in Flexible Electronics Featured at NextFlex Innovation Day 2018

AU Innovation in Flexible Electronics Featured at NextFlex Innovation Day 2018

Auburn University’s Flexible Biometric Band was featured at the NextFlex Innovation Day on Aug 9th, 2018 in San Jose, CA.  The intended application for the band is for operators working on the inspection and maintenance on aircraft fuel tanks.  The fuel tanks are small, confined spaces in the aircraft, which reside in the fuselage and inside the wings of the aircraft. Inspection and maintenance operations require the operators to climb inside the confined space of the fuel tanks. Oxygen levels in a confined space may become depleted due to oxidation or depletion by another gas. The typical concentration of oxygen in the environment is 20.9 percent. When oxygen levels drop from 19.5 percent to 12 percent, judgment is impaired and personnel may experience an increased pulse and fatigue. If levels drop further, from 12 percent to 6 percent, fatigue, nausea and vomiting will occur. A dual-use aspect of the technology may include the following applications: monitoring of vitals of workers in high-heat environments to determine when workers need to come out of the heat before the effects of heat stress become a physical risk factor and monitoring of an individual worker in a hazardous environment

The multi-sensor biomedical band will be worn by the operator working in a confined space and it’s multiple sensors will measure for the loss of blood oxygenation resulting from depletion of oxygen in the environment in the fuel tank, abrupt changes in the pulse rate resulting from anxiety or claustrophobia, loss of consciousness, myocardial infarction, stroke, bradycardia or
aneurysm. Additional sensors can  be added if needed to address a broader range of medical conditions. The raw data from the sensors is gathered by the embedded microcontroller on the wearable band through the GPIO and transmitted via the Bluetooth sensor on the USART port of the microcontroller to the paired smartphone. The LifeSaver App is installed on the smartphone and receives the transmitted data via the Bluetooth module and processes the data checking for imminent danger to the operator. If the status is OK, the app continues to monitor silently. However, if the operator is in imminent danger, or in need of medical attention, the app autonomously contacts emergency medical services with the GPS location of the operator and details the condition of the operator and the nature of the medical condition.